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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

(1) The Rational Transfer Function Model

Many discrete-time random processes encountered in practice can
be well approximated by a rational function model (Yule 1927).

Readings: Haykin 4th Ed. 1.5
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1.2 The Rational Transfer Function Model

The Rational Transfer Function Model

Typically u[n] is a noise process, gives rise to randomness of x [n].

The input driving sequence u[n] and the output sequence x [n] are
related by a linear constant-coefficient difference equation

x [n] = −
∑p

k=1 a[k]x [n − k] +
∑q

k=0 b[k]u[n − k]

This is called the autoregressive-moving average (ARMA) model:

autoregressive on previous outputs

moving average on current & previous inputs
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1.2 The Rational Transfer Function Model

The Rational Transfer Function Model

The system transfer function

H(z) , X (z)
U(z) =

∑q
k=0 b[k]z

−k∑p
k=0 a[k]z

−k , B(z)
A(z)

To ensure the system’s stationarity, a[k] must be chosen s.t. all
poles are inside the unit circle.

ENEE630 Lecture Part-2 4 / 22



1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.2 The Rational Transfer Function Model

(2) Power Spectral Density of ARMA Processes

Recall the relation in autocorrelation function and p.s.d. after
filtering:

rx [k] = h[k] ∗ h∗[−k] ∗ ru[k]

Px(z) = H(z)H∗(1/z∗)PU(z)

⇒ Px(ω) = |H(ω)|2PU(ω)

{u[n]} is often chosen as a white noise process with zero mean and

variance σ2, then PARMA(ω) , PX (ω) = σ2|B(ω)
A(ω) |

2,

i.e., the p.s.d. of x [n] is determined by |H(ω)|2.

We often pick a filter with a[0] = b[0] = 1 (normalized gain)

The random process produced as such is called an
ARMA(p, q) process, also often referred to as a pole-zero model.
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1.2 The Rational Transfer Function Model

(3) MA and AR Processes

MA Process

If in the ARMA model a[k] = 0 ∀k > 0, then

x [n] =
∑q

k=0 b[k]u[n − k]

This is called an MA(q) process with PMA(ω) = σ2|B(ω)|2. It is
also called an all-zero model.

AR Process

If b[k] = 0 ∀k > 0, then

x [n] = −
∑p

k=1 a[k]x [n − k] + u[k]

This is called an AR(p) process with PAR(ω) = σ2

|A(ω)|2 . It is also

called an all-pole model.

H(z) = 1
(1−c1z−1)(1−c2z−1)···(1−cpz−1)
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1.2 The Rational Transfer Function Model

(4) Power Spectral Density: AR Model

ZT: PX (z) = σ2H(z)H∗(1/z∗) = σ2B(z)B∗(1/z∗)
A(z)A∗(1/z∗)

p.s.d.: PX (ω) = PX (z)|z=e jω = σ2|H(ω)|2 = σ2|B(ω)
A(ω) |

2

AR model: all poles H(z) = 1
(1−c1z−1)(1−c2z−1)···(1−cpz−1)
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1.2 The Rational Transfer Function Model

Power Spectral Density: MA Model

ZT: PX (z) = σ2H(z)H∗(1/z∗) = σ2B(z)B∗(1/z∗)
A(z)A∗(1/z∗)

p.s.d.: PX (ω) = PX (z)|z=e jω = σ2|H(ω)|2 = σ2|B(ω)
A(ω) |

2

MA model: all zeros
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1.2 The Rational Transfer Function Model

(5) Parameter Equations

Motivation:

Want to determine the filter parameters that gives {x [n]} with
desired autocorrelation function?

Or observing {x [n]} and thus the estimated r(k), we want to figure
out what filters generate such a process? (i.e., ARMA modeling)

Readings: Hayes §3.6
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1.2 The Rational Transfer Function Model

Parameter Equations: ARMA Model

Recall that the power spectrum for ARMA model

PX (z) = H(z)H∗(1/z∗)σ2

and H(z) has the form of H(z) = B(z)
A(z)

⇒ PX (z)A(z) = H∗(1/z∗)B(z)σ2

⇒
∑p

`=0 a[`]rx [k − `] = σ2
∑q

`=0 b[`]h∗[`− k], ∀k.
(convolution sum)
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1.2 The Rational Transfer Function Model

Parameter Equations: ARMA Model

For the filter H(z) (that generates the ARMA process) to be
causal, h[k] = 0 for k < 0.
Thus the above equation array becomes

Yule-Walker Equations for ARMA process{
rx [k] = −

∑p
`=1 a[`]rx [k − `] + σ2

∑q−k
`=0 h∗[`]b[`+ k], k = 0, . . . , q

rx [k] = −
∑p

`=1 a[`]rx [k − `], k ≥ q + 1.

The above equations are a set of nonlinear equations
(relate rx [k] to the parameters of the filter)
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1.2 The Rational Transfer Function Model

Parameter Equations: AR Model

For AR model, b[`] = δ[`]. The parameter equations become

rx [k] = −
∑p

`=1 a[`]rx [k − `] + σ2h∗[−k]

Note:

1 rx [−k] can be determined by rx [−k] = r∗x [k] (∵ w.s.s.)

2 h∗[−k] = 0 for k > 0 by causality, and

h∗[0] = [limz→∞H(z)]∗ =
(
b[0]
a[0]

)∗
= 1

Yule-Walker Equations for AR Process

⇒ rx [k] =

{
−
∑p

`=1 a[`]rx [−`] + σ2 for k = 0

−
∑p

`=1 a[`]rx [k − `] for k ≥ 1

The parameter equations for AR are linear equations in {a[`]}
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1.2 The Rational Transfer Function Model

Parameter Equations: AR Model

Yule-Walker Equations in matrix-vector form

i.e., RTa = −r • R: correlation matrix

• r : autocorrelation vector

If R is non-singular, we have a = −(RT )−1r .

We’ll see better algorithm computing a in §2.3.
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1.2 The Rational Transfer Function Model

Parameter Equations: MA Model

For MA model, a[`] = δ[`], and h[`] = b[`]. The parameter
equations become

rx [k] = δ2
∑q

`=0 b[`]b∗[`− k︸ ︷︷ ︸
,`′

] = σ2
∑q−k

`′=−k b[`′ + k]b∗[`′]

And by causality of h[n] (and b[n]), we have

rx [k] =

{
σ2
∑q−k

`=0 b∗[`]b[`+ k] for k = 0, 1, . . . , q

0 for k ≥ q + 1

This is again a set of non-linear equations in {b[`]}.
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1.2 The Rational Transfer Function Model

(6) Wold Decomposition Theorem

Recall the earlier example: y [n] = A exp[j2πf0n + φ)] + w [n]
• φ: (initial) random phase • w [n] white noise

Theorem

Any stationary w.s.s. discrete time stochastic process {x [n]} may
be expressed in the form of x [n] = u[n] + s[n], where

1 {u[n]} and {s[n]} are mutually uncorrelated processes, i.e.,
E [u[m]s∗[n]] = 0 ∀m, n

2 {u[n]} is a general random process represented by MA model:
u[n] =

∑∞
k=0 b[k]v [n − k],

∑∞
k=0 |bk |2 <∞, b0 = 1

3 {s[n]} is a predictable process (i.e., can be predicted from its
own pass with zero prediction variance):
s[n] = −

∑∞
k=1 a[k]s[n − k]
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1.2 The Rational Transfer Function Model

Corollary of Wold Decomposition Theorem

ARMA(p,q) can be a good general model for stochastic processes:
has a predictable part and a new random part (“innovation
process”).

Corollary (Kolmogorov 1941)

Any ARMA or MA process can be represented by an AR process
(of infinite order).

Similarly, any ARMA or AR process can be represented by an MA
process (of infinite order).
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1.2 The Rational Transfer Function Model

Example: Represent ARMA(1,1) by AR(∞) or MA(∞)

E.g., for an ARMA(1, 1), HARMA(z) = 1+b[1]z−1

1+a[1]z−1

1 Use an AR(∞) to represent it:

2 Use an MA(∞) to represent it:
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1.2 The Rational Transfer Function Model

(7) Asymptotic Stationarity of AR Process

Example: we initialize the generation of an AR process with
specific status of x [0], x [−1], . . . , x [−p + 1] (e.g., set to zero) and
then start the regression x [1], x [2], . . . ,

x [n] = −
p∑
`=1

a[`]x [n − `] + u[n]

The initial zero states are deterministic and the overall random
process has changing statical behavior, i.e., non-stationary.
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1.2 The Rational Transfer Function Model

Asymptotic Stationarity of AR Process

If all poles of the filter in the AR model are inside the unit circle,
the temporary nonstationarity of the output process (e.g., due to
the initialization at a particular state) can be gradually forgotten
and the output process becomes asymptotically stationary.

This is because H(z) = 1∑p
k=0 akz

−k =
∑p

k=1
Ak

1−ρkz−1

⇒ h[n] =
∑p′

k=1 Akρ
n
k +

∑p′′

k=1 ck r
n
k cos(ωkn + φk)

p′: # of real poles
p′′: # of complex poles, ρi = rie

±jωi

⇒ p = p′ + 2p′′ for real-valued {ak}.

If all |ρk | < 1, h[n]→ 0 as n→∞.
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1.2 The Rational Transfer Function Model

Asymptotic Stationarity of AR Process

The above analysis suggests the effect of the input and past
outputs on future output is only short-term.

So even if the system’s output is initially zero to initialize the
process’s feedback loop, the system can gradually forget these
initial states and become asymptotically stationary as n→∞.
(i.e., be more influenced by the “recent” w.s.s. samples of the
driving sequence)
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Detailed Derivations
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Example: Represent ARMA(1,1) by AR(∞) or MA(∞)

E.g., for an ARMA(1, 1), HARMA(z) = 1+b[1]z−1

1+a[1]z−1

1 Use an AR(∞) to represent it, i.e.,
HAR(z) = 1

1+c[1]z−1+c[2]z−2+...

⇒ Let 1+a[1]z−1

1+b[1]z−1 = 1
HAR(z)

= 1 + c[1]z−1 + c[2]z−2 + . . .

inverse ZT ∴ c[k] = Z−1
[
H−1ARMA(z)

]
⇒

{
c[0] = 1

c[k] = (a[1]− b[1])(−b[1])k−1 for k ≥ 1.

2 Use an MA(∞) to represent it, i.e.,
HMA(z) = 1 + d [1]z−1 + d [2]z−2 + . . .
∴ d [k] = Z−1 [HARMA(z)]

⇒

{
d [0] = 1

d [k] = (b[1]− a[1])(−a[1])k−1 for k ≥ 1.
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